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We investigate the stability of a steady flow of a Grad [l and 21 fluid in the space between 
two rotating, infinitely long, concentric cylinders. We assume that the clearance between 

the cylinders is small, that they rotate both in the same direction and that small perturba- 
tions are axially symmetric [3]. W e also assume that couple stresses are absent and that 
both, dimensionless relaxation time and dimensionless dynamic viscosity are small. We 
show that the critical Taylor number for a Grad fluid is larger than that for a Newtonian 
fluid. An approximate method of calculating the critical Taylor number is given, some prop- 
erties of the spectrum of eigsnvalues are noted and an analogy is drawn between the prob- 
Iem of stability of the fIow of a Grad fluid, and of a viscoplastic fluid [Sf. 

1. In the absance of couple stresses, the equations of motion for a viscous incompressi- 

ble fluid have, in the cylindrical (r, 8, E) coordinate system, the form [l and 21 

i?V 
-2r 

at 
“-+~~+yz_$~= 

?- vr a? 

1-t-S 
-g+r 

( 

2 &J 
AVr-;-y~x 

28 2 8% w3 
=-- 

) ( -t--g- rx---yg 

1074 



Stability of Couette flow of the anomalous Grad fluid. 1075 

Here vr, vo and uz are the dimensionless projections of the velocity vector; o,, 08 

and o, are the dimensionless projections of the mean angular velocity vector of fluid mole- 

cules; p is the dimensionless equilibrium pressure, v is the kinematic Newtonian viscosity, 

V, is the kinematic radial viscosity, 1 is a scalar constant of the fluid with the dimension 
of the moment of inertia of the unit mass, Q 1 and RI are the angular velocity and radius of 

the inner cylinder, respectively, T is the dimensionless relaxation time and 6 is the dimen- 

sionless radial viscosity which defines the measure of asymmetry of the stress tensor. Eqs. 

(1.1) have the exact solution 

VtO = 2, o - * - or0 = oeO = 0, veO = ar + b / r = v,,, ozo = a 

O?Ro,a - 8& b = (‘4 - &) R? (1.2) 
a = (Rf - R12) 621 ; C& (Rz? - RZ) 

where Q2, and R, are the angular velocity and radio, p of the outer cylinder, respectively. 

Solution (1.2) describes a steady flow of fluid in the space between rotating cylinders. 
To see how this solution behaves under relatively small, axially s 

we shall investigate a unsteady solution of (l.l), which has the form 31 i? 

metric perturbations, 

, 
VP = VI- t v, = vg + Ve’, vz = vz 

I 
* P = PO + P’, or = 0, 

aI@ = a@‘, 02 = (4’ + Cz’, up’ = - ihjf/Lk, Uzr = r-1 8 (rq) & (1.3) 
vt)’ = v (r) eot+ihz, qf = iq p) p+i)iz 

% 
’ = a (r) p+i)iz, 

W~’ = p (r) pt+ihz, 0,’ = y (r) ,ot+iu 

where h is a real parameter and 0 is complex. 
Eqs. (1.1) and (1.3) yield [3] the following relations for I/I and u: 

IL - h* 9 (1 + Q-1&?] (L - I?) $ = 2 (1 + S)-l hR (a + br2) v - 

4 (1 f 6)-% (L - AS) { [lv,r-au - (a + z) (L - A*) 91 ([(a + T)B 9 VI? I-81”) 
[L - A9 - (1 +,6)-l OR] v = 2 (1 + Q-l h Ra* + 6 (1 + Q-l Z (U Ji T)-‘LV - (1.4) 

- 6 (1 + Q-1 ?h [a (a + 5) v + vg+ (L - h2) $1 [(a + r)2 + voa r-v’ 

Characteristic equation of the problem of stability of (1.2) has the form 

F (a, h, 6, z, R, R,lRl, Q,l a,)= 0 (1.5) 

When 8= 0, Eqs. (1.4) and (1.5) correspond to the problem of stability of the Couette 
flow of a Newtonian fluid. As usual [3] we assume that 0 = 0, i.e. that the ‘neutral’ pertur 
bation constitutes, actually, a secondary flow. In this case the critical value of R corres- 
ponding to the boundary of the region of instability will be the smallest positive root of Eq. 

J’ (0, a, 6, 7, R, R, I RI, Q, ! 8,) = 0 

Assuming that our investigation is of approximate character, we may postulate that the 
clearance between the cylinders is small and that the outer cylinder does not rotate [3 and 

51. Let us, in addition, assume that 6 <( 1, i.e. that the autisymmetric component of the 
stress tensor is small, compared with the symmetric one. Then if 7 < 1, we can neglect 
the terms of (1.4) containing 6 2, 87 and 72 to obtain the following relations for u1 and vl: 

(D2 - k*)%, = 2 (1 - 6)kaR’v~, [Da - ka (1 f 6)] q = 2uR’z4 (1.6) 

ul= Al= dq / dg = 0 when % = 0, % = 1 

%= (r - 1) / e, e= (R, -&)/&<I, k=he, R’ = Rea 
ul= u/e=$kJef 

q= VI e, D (...) = d (...) / d%, a<0 
Eliminating ui from (1.6) we have 
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-(D2 - k2)2 IDa - ka (1 + 6)] v 1 = k2T (1 - 6) v1 (f.7) 

v1= 0, [D2 - lra (1 -p S)]q = 0, D [Ds - kz (1 + s)] ur = 0 when $, = 0,i 

T= -_2 aR’%= - 2a (Ra f RI - 1)?R2 (W 

Were T is the Taylor parameter and its lowest value defines the criterion of stability. 

Putting 6 = 0 in (1.7) we obtain the well-known equation for a Newtonian fluid 

- (D2 - k2)q = To kztl, TO = -Z2a(R,/R1-~)4Ra 

u1= 0, (D2 - k2) q = 0, D(D2 - ks)vI = 0 when E = 0; 1 (1.9) 

which can also be obtained from (1.4) under the assumptions that 7 >> 1 and 8 < 1. 

In the following we shall denote v1 and u1 by v and II, respectively. 

2. Following (41 we shall now reduce (1.6) to the integral operator form 

z, = /J GIG, v, p = kZ (1 - 6) T (2.1) 

where G, are Green’s integral operators defined by 

Gji = 5 .JQ (E;, Co) f (Coo) @C, j=2,2 (2.2) 

0 

Sere K and K 

+ 8)f and fD2 - kZ? 2 

are Green’s functions for ordinary differential operators f- D* + k2(l + 

appearing in (1.6). Re have 

[D” - k” (1 -+ 6)] f = p,’ -$- pi -$ pa’,/, po ~~ p2 = ,k4 

(OS - k”)? i = po ;;- PI $- pypo + pi & paf t F1 = ,-zit e 

()o‘ = p; = ,k (1+8/a) 4, p1/ = ,?-zr;’ (1+8/z) 5 

Functions p are positive, continuous and infinitely and continuously differentiable, 

therefore G, are integral oscillatory operators f6 and 71. 

The product G,G, is again an oscillatory operator, hence the spectrum of the problem 

(2.1) consists of a sequence of simple, positive eigenvalues [7] 

0 < ~1 (k)<...<~n (k) --, 00 (2.3) 

It is easy to see that the operators Gj are linear, symmetric and completely continuous 
over a Rilhert space Ho with the following scalar product: 

(9% WJ$o== [WWF 

In this case Gj will be analytic functions’of the parameter k and a11 eigenvalues @n will 

also be analytic in k [d. Relations (2.1) imply that a sequence of positive values Z’, exists, 

for which neutral perturbations are possible and, moreover, that they are analytic functions 

of k (with exception of k = 0 and DO). 

Let us now assume that 0 < T, (k) < . . . < T, (k) + 00. Here T, (k) defines the boundary of 

the domain of stability. Let us denote by T * the minimum value of T,fk). Obviously T* > 0. 

We shall show that T* can be achieved at some k > 0. Since T, (k) is analytic in k, it will 
be sufficient to show that T, (0) = T 1 (00) = 00. We know that ~1~ (k) > 0 for any k, therefore 
T, (k) = pI (k)/k2 + CQ as k -+ 0. To find the value of T,(k) when k -P 00, we shall multiply 

(1.6) by tl and z, respectively and integrate the result with respect to c from zero to one. 
Simple calculations will then yield the estimate T,(k) > k4 from which it follows that T,(k) 

+a, ask-m. 

3. Neglecting the terms containing 62, we can rewrite (1.7) as 

--(L>z - h2)3 u - 26h2 (Dz - h?)% = p”, k2 = kz (i + 6) 

v = 0, (@ - h2) v = 0, D (Da -P)v=O for E = 0; 1 
(3.9 
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L,et ,V be the set of functions {vj which are fourfold continuously differentiable and 
which satisfy the boundary conditions (3.1). Let the Flilbert space H supplement the set on 
the norm generated by the scalar product 

1 1 

(v, f)H =Y 1 (DrDj + h%J) dt = - s [(D"-- h")v] f dt (3.2) 

0 0 

Re shall define the operator A on H as follows: 

(ALI, f)* = i {[{D - h94 + 2@P (LF - 'zy v) f d& IfH (3:3) 

0 

The system (3.1) is equivalent to the operator equation 

dz: = ~2’ (3.4) 

me easily see that the operator ‘4 is self-adjoint on H. Putting k = h, we can write (1.9) 
in the operator form 

do D = ft*v, P0 = h”-T” 
(3.5) 

where A0 is given by 

The operator A0 is atso self-adjoint on H. Let us write A in the form .4 = do= 8 A ‘, 
where A 1 is given by 

1 

(.1'z,, & = 2 
s 
[(P - /S,F z)] / dE (3.7) 

0 

Since A and A* are self-adjoint and their eigenvalues are simple, we can expand the 
eigenvalues of A into a series [RI 

where v &‘(h, 4) . LS an eigenfunction corresponding to 11 r” - the first eigenvalue of the op- 
erator A and ut is the first eigenvalue of A. 

Neglecting the squares of “to we obtain from (1.91, (2.2). (3.5) and (3.3). 

Tl(k) = (1 t_ 2S)T01 (h) (3.9) 

which yields the approximate values of T, &I provided that the solution of the problem of 
stability of the Couette flow of a Newtonian fluid is known. 

Relation (3.9) shows that the Couette flow of the Grad fluid is more stable than that of 
a Newtonian fluid. 

We also observe that (1.7) will be foxtnally equivalent to the equations of the problem of 
stability of the Couette flow of a viscoplastic fluid [5! if we put in (1.7) 

where ‘/-o is the yield point and 77 is the dynamic coefficient of Yewtonian viscosity. 

Since (1.7) holds for 6 <( 1, computational results of f5] can be utilised in determining 
the stability of the Couette flow of the Grad fluid for small fo. 

The author thanks D.D. fvlev and A.T. Listrova for guidance in this work. 
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